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This talk....

* The use of temperature as a tracer for hydrogeological
processes is, still, in a renaissance (after a small Ice
Age during the 80s and 90s).

* |Increasingly however, subsurface temperatures are in

a transient state resulting from surface environmental
change

 Groundwater flow controls significantly how
subsurface temperatures will respond for a given
surface temperature change.

 How can the transience of relatively deep (>25 m)

temperatures be interpreted for groundwater flow at
sub-regional to regional scales?



What is the origin of the Earth’s
internal heat?

* Primordial heat _omst
— The Earth has only partially
cooled since its formation oo
~4.6-10° years ago. Mantle

« Radioactive decay of
uranium-238 and thorium-232.

+
afal

v ~2900 km

 Primordial and radioactive ¥ ...
heat contribute about 50% oo
each to the total global surface
heat flux.

European Synchrotron Radiation Facility, Grenoble, France

Dye, S. T. (2012). Geoneutrinos and the radioactive power of the Earth. Reviews of Geophysics



Measuring thermal gradients in the subsurface

T

surface

Isotherms

Data collection Lower
Rhine Embayment,
Germany

Geothermal heat flow
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Interpreting temperature-depth profiles

At the base of the ‘seasonal zone’ temperature
will be at the annual average value.

When the annual average temperature
fluctuates (e.g. climate change) transient
temperature signals will be present below the
seasonal zone.

From deeper, where the temperatures are
stable, and in the absence of groundwater flow
the geothermal heat flow component can be
estimated using Fourier’s Law.

Heat transfer by conduction is described by
Fourier’'s Law:
-l
4y Py
qy [Wm2] is the heat flux, k [Wm-1°C-1] is
thermal conductivity which can be calculated

from:
K =nk,+(l-n)k,

in which n is porosity, Kfand K. are the thermal
conductivity of water and rock grains
respectively. Since k; < k;, thermal conductivity
decreases with increasing porosity. e.qg.
Sandstone: k= 2.5 Wm-°C-1; Clay: k= 1
Wm-1oC-1,
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Global surface heat flux distribution
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Thermal regime in the shallow crust

Heat transport by conduction and advection through fluid
flow:

i . T
V- |k VT = Cuq-VT =C,—
ot
Ra :thermal conductivity [W/m/K]
(', : volumetric heat capacity of water [J/m3/K]

C '« effective volumetric heat capacity of rock-fluid mixture [J/m3/K]

—

(/ :Darcy flux [m/s], fluid flow

Boundary conditions
— Geothermal heat flow (e.g. 50 mW/m?)

— Surface temperature conditions and variability (e.g. seasonal,
climate, glaciation, land-use change)



Effects of convection on regional scale heat transfer

terp: 101214 16 18 20 22 24 26 28 30 32 34 36 35 40 42 44 46 45 50 52 54

Elevation [m]
L\
(=
Q
(@)

4000 6000 10000

Distance [m]

Discharge Recharge

Elevation [m]
L;
-
-
()

| I
2000 4000 " 6000 ' remperature 10000
Temperature Distance [m]

f '

Depth
Depth




Impact of convection on regional scale heat flow

South Dakota

30s || 40s || 50s || 60s || 70s || >80 | mW/m?

100 km
from Saar (2011), Hydrogeology Journal



Interpreting temperature-depth profiles
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the geothermal heat flow component can be
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Attenuation of the seasonal signal under the influence of near-
surface groundwater flow
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Impact of vertical groundwater flow on a TD-profile in a warming climate

Steady-state Transient stage New steady-state
Temperature t, t,

e —

Depth

Downward
flow



Taniguchi et al.,

1999, WRR

TEMPERATURE (°C)

- Tokyo metropolitan area

Fit the entire TD profile to analytical

14 16 18 20 92 curves to infer groundwater flow rate
0 T T T ~ :
(b) ’ U=0. 8m/y (qz U)'
) /ﬂ »U=0. 6m/y
g AU=0. dn/y T(z,t)=To+Ts(z—Ut)+(b+TgU)/2U
’ : bk U=0. 2m/y : S
#U=-0. 2n/y [(z+UT)e" *erfc(z+Ut) / (2/at)
50 f wU=-0. 4n/y '
' +U=-0. 6/ +(Ut—z)erfc(z—Ut)/(2y/xt)]
*xU=-0. 8m/y
@observed
E z Is depth, a is the thermal diffusivity; T,
ENO i is the background thermal gradient
a (based upon Carslaw and Jaeger, 1959)
Only linear warming rate (climate) or
- step-warming (e.g. urbanisation) can
be imposed.
For t, a linear TD profile has to be
AR 0 ;
200 :

used which implies no groundwater
flow at t,.

This is labeled the ‘CJT approach



Taniguchi et al., 1999, WRR - Tokyo metropolitan area
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Figure 5. Temperature-depth profiles at (a) well 40 in
Musashino terrace, (b) well 1 in Tachikawa terrace, (c) well 2
south of the Tama River, and (d) well 74 in Shitamachi low-
land. Arrows show the depths of minimum temperature in the
profiles.

Alternatively, relate vertical Darcy flux
solely to the position of the ‘inflection
point’ in sets of TD profiles reflecting
surface warming.

Making use of an analytical solution
assuming a linear warming rate since t,
(ie., the onset of warming) to estimate
‘deep’ vertical groundwater flow from
the position of the inflection point.
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Repeated TD logging

* Allows to implement Taniguchi’s original idea

to track the propagation of the inflection point
as a tracer for groundwater flow.

e Measures the true transient.

e Potential to link with records of surface change
(land-use and climate) and improve our
understanding of how such changes are

reflected and propagating through the
subsurface.



Testing CJT, FAST and a numerical model and against
repeated TD data

a) b) c)

CJT Analytical FAST Analytical FlexPDE Numerical

/

——|C 1965 giﬂam
CJIT 197 4

O Doslen 2016
4 Duslen 1978

Depth [m]
Depth [m]
Depth [m]

g,=0.3m/a

100+ 100 -

150 1
9 a5 10 10.5 -] as 10 105 ] s 10 10.5

Temperature [°C) Temperature [°C] Temperature [°C]

Revealing inconsistencies in the CIT approach leading to overestimates of g,.
Repeated profiles can not be fitted with the same initial TD profile

A recent, and more flexible analytical solution (i.e., FAST, Kurylyk and Irvine,

2016) can use non linear initial conditions, and its outcomes are consistent with
numerical model results
Bense et al., 2017 - WRR



Veluwe area,
Netherlands —
land use, and
location of TD
measurements
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Historical TD data set — general patterns

1978-1981 (n = 30) T,~2.5°C: land use
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numerical modeling [Bense et al., in prep]



TD logging a borehole (2016)

 RBRsoloT, accuracy £0.002 °C, 1-2 seconds response time

* Recording every meter depth in 50 mm piezometer tubes




Historical TD data set compared to present day

1978-1981 (n = 30)
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Historical TD data set compared to present day situation

1978-1981 (n = 30)
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Veluwe area,
Netherlands —
land use, and
location of TD
measurements
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Veluwe area,
Netherlands —
land use, and
location of TD
measurements
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Comparing TD data in time and space

Temperature change
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Aiming to unravel impacts
on temperature
distributions of geological
build-up, land-use and
groundwater flow (+ surface
warming)




2D modeling, land use and groundwater flow

Temperature [°C] &822=S232852o

Heat conduction only,
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In progress!
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TD data quality: 1978-81 vs. 2016 - inflection point
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The depth (z,) where the temperature-depth gradient is zero can be found for each
repeated TD profile and plotted in time.

Data quality is an issue for the accurate determination of this inflection point in the TD
record.

Bense et al., 2017, WRR
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Inflection point propagation for contrasting groundwater flow
conditions in a warming climate
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Bense and Kurylyk, 2017, GRL



Model results using long term Surface Air Temperature as
the top boundary condition o Scenario
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Groundwater abstraction sites
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Major groundwater abstraction station in
the Netherlands (9 Mm3/a).

Inflection point depths in TD profiles
surrounding the station, increase in
accordance with increasing vertically

downward fluxes nearer the the abstraction
field.

Likely, that a 2/3D coupled heat-fluid flow
model is needed for a quantitative
interpretation.
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Wrapping up...

 Deep subsurface temperatures are increasingly in a transient
state, due to surface environmental change, requiring novel
techniques to interpret those for groundwater flow

* Taniguchi’s original analytical solution to interpret transient
TD profiles has shortcomings and is better replaced by either
a numerical model, or a more flexible analytical schemes (e.g.,
FAST)

* Where more complex systems, e.g. groundwater abstraction
sites, are considered it appears that inflection point depths on
their own can serve as a useful diagnostic for groundwater
flow conditions

* Detailed numerical modeling is underway to unravel effects of
geology, groundwater flow, land-use, and climate warming on

thermal regimes WAGENINGEN

UNIVERSITY & RESEARCH



