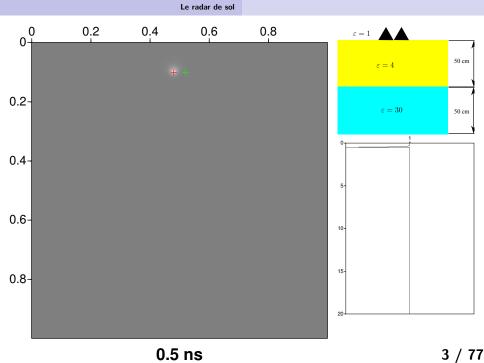
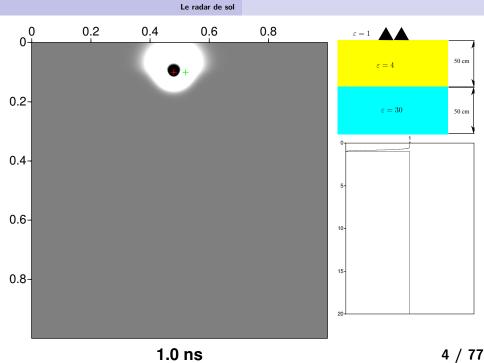
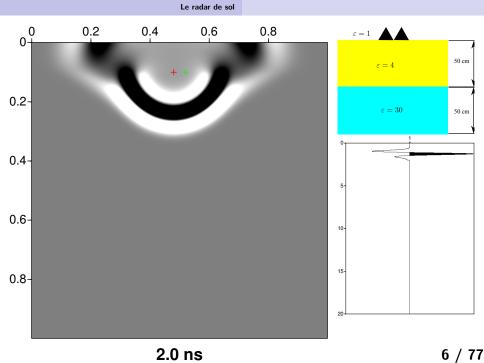

Quelques applications du radar de sol à l'hydrologie

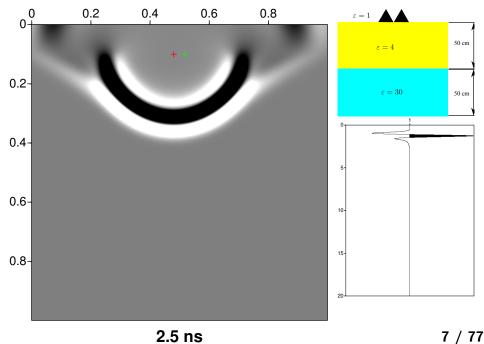

Albane Saintenoy


avec la collaboration de Emmanuel Léger, Piotr Tucholka, Jean-Michel Friedt, Florian Tolle, Éric Bernard, Mélanie Quenet, Christelle Marlin, Madeleine Griselin, Christelle Courbet, Lean Nguyen, François Costard, Christophe Grenier, Ivan Khristoforov

GEOPS UMR 8148 CNRS - Université Paris Sud

Des antennes commandées par un boîtier électronique haute fréquence pour émettre et enregistrer les amplitudes d'ondes électromagnétiques au cours du temps

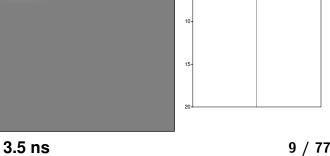




0.2 0.4 0.6 8,0 $\varepsilon=1$ 50 cm $\varepsilon = 4$ 0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20-

Le radar de sol

Le radar de sol



Le radar de sol 0.2 0.4 0,6 8.0 $\varepsilon = 1$ 50 cm $\varepsilon=4$ + +0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20-

3.0 ns

8 / 77

Le radar de sol 0-' 0.2 0.4 0,6 8,0 $\varepsilon=1$ 50 cm $\varepsilon=4$ + +0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-

Le radar de sol 0.2 0.4 0,6 8,0 $\varepsilon = 1$ 50 cm $\varepsilon = 4$ + +0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20-

10 / 77

4.0 ns

0.2 0.4 0.6 8,0 $\varepsilon = 1$ 50 cm $\varepsilon = 4$ + + 0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20-

11 / 77

Le radar de sol

0.2 0.4 0.6 8,0 $\varepsilon=1$ 50 cm $\varepsilon = 4$ + + 0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20

12 / 77

Le radar de sol

5.0 ns

13 / 77

0-' 0.2 0.4 0.6 8,0 $\varepsilon=1$ 50 cm $\varepsilon = 4$ + + 0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20

15 / 77

Le radar de sol

0-0 0.2 0.4 0.6 8,0 $\varepsilon=1$ 50 cm $\varepsilon = 4$ 0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20

16 / 77

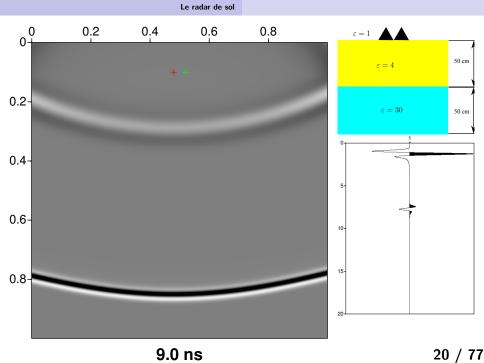
Le radar de sol

7.0 ns

0-' 0.2 0.4 0.6 8,0 $\varepsilon=1$ 50 cm $\varepsilon = 4$ 0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20

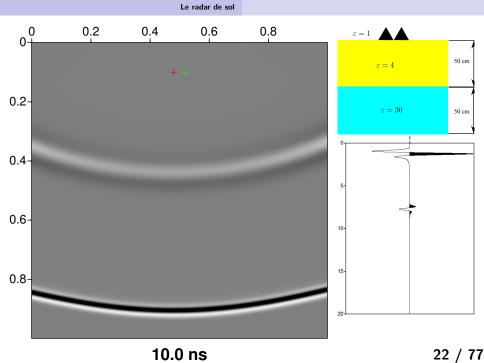
17 / 77

Le radar de sol

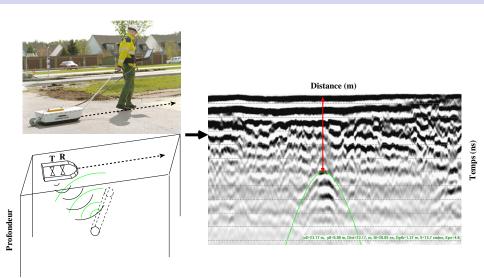

0-0 0.2 0.4 0.6 8,0 $\varepsilon=1$ 50 cm $\varepsilon = 4$ 0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20-8.0 ns 18 / 77

Le radar de sol

0 0 0.2 0,4 0,6 8.0 $\varepsilon=1$ 50 cm $\varepsilon = 4$ 0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20-


19 / 77

Le radar de sol



0 _0 0.2 0.4 0,6 8,0 $\varepsilon=1$ 50 cm $\varepsilon = 4$ + + 0.2- $\varepsilon = 30$ 50 cm 0.4-0.6-10-15-0.8-20-9.5 ns 21 / 77

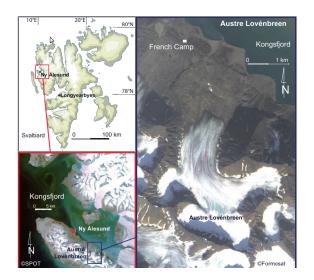
Le radar de sol

Acquisition radar classique (mono-déport)

Paramètres accessibles

Estimation de paramètres électromagnétiques:

- ightharpoonup la permittivité diélectrique arepsilon
- ightharpoonup la conductivité électrique σ
- ightharpoonup la perméabilité magnétique μ

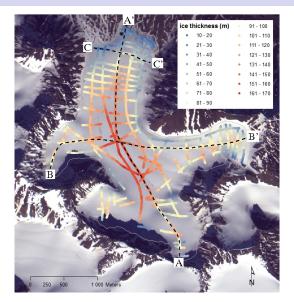

La permittivité diélectrique dépend de la teneur en eau et de la température \to Applications en hydrologie

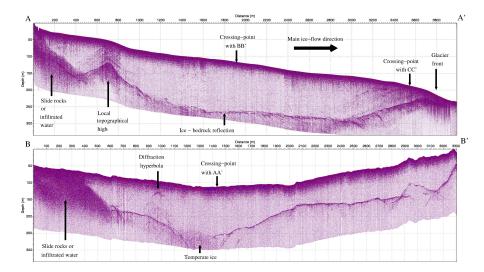
Radar en Arctique (2010 -)

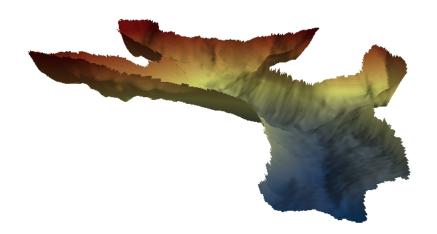
avec C. Marlin, M. Griselin, J.-M. Friedt, F. Tolle, E. Bernard, D. Laffly

Austre Lovénbreen: glacier arctique de 4.6 km²

Équipements

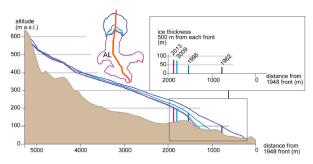

- ▶ Ramac Mala GPR avec CUII, antennes 50 MHz et 100 MHz
- ► Sondages de la couverture neigeuse
- GPS différentiels
- ► Appareils photos sur site




Profils radar et épaisseurs de glace

Radargrammes au travers du glacier (100 MHz)

Reconstruction du fond du glacier


Incertitudes sur le volume de glace estimé

Source d'incertitude	Volume	Erreur relative
Positionnement GPR: ± 1.77 m	$0.008~\mathrm{km}^3$	2.3 %
Surface du glacier	$0.0056~\mathrm{km}^3$	1.6 %
Épaisseur de neige	$9.2 \times 10^{-4} \text{ km}^3$	0.3 %
Vitesse de l'onde	$0.0042~\mathrm{km}^3$	1.2 %
Interpolation	$0.040 \; \mathrm{km^3}$	11.5 %

Volume de glace estimé

- ightharpoonup Volume dérivé des données migrées: 0.3487 \pm 0.041 km³
- ► Épaisseur moyenne: 76 m
- Épaisseur moyenne d'après la formule empirique de Hagen : $D=33\log(A)+25$ avec $A=4.6\pm0.28$ km² implique $D=75\pm2$ m
 - i. e. un volume de $0.345 \pm 0.046 \text{ km}^3!$

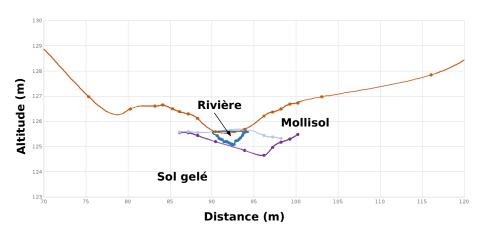
Évolution du glacier

1962-1995 Perte de 16% du volume de 1962 taux moyen = 0.5% par an

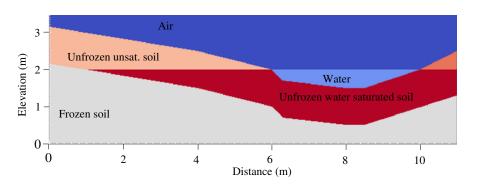
1995-2009 Perte du 12% du volume de 1995 taux moyen = 0.9% par an

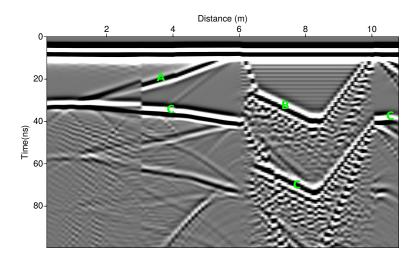
Marlin et al., Geografiska Annaler, 2017

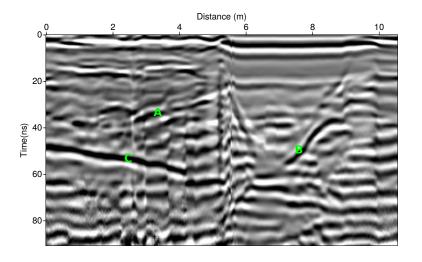
Autres études associées


- Détermination des limites du glacier
- Modélisation état thermique du glacier
- Suivi d'un lac supra-glaciaire au cours des saisons
- Suivi thermique, hydrogéologique et géomorphologique de la zone morainique liée au retrait du glacier

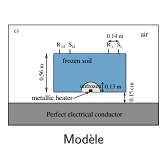
Bernard et al., Int. J. of Appl. Earth Obs. and Geoinfo., 2014 Quenet, Thèse de doctorat, 2014

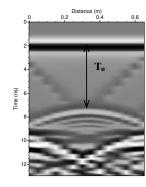

Empreinte thermique d'une rivière à Syrdakh (Yakoutie Centrale)

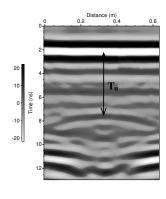

Mesures sur le terrain


Modélisations numériques

Données simulées

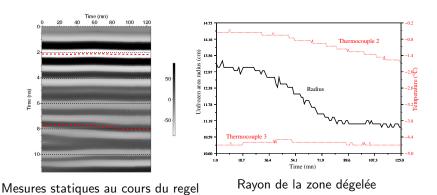

Données de terrain octobre 2016 (200 MHz)




Poursuites futures à Syrdakh

- ▶ Les données radar acquises en octobre 2016 permettent de déterminer les interfaces entre mollisol et sol gelé ainsi que celle entre la zone saturée en eau autour de la rivière et celle non saturée en eau dans le mollisol.
- Répétition des mesures de terrain à différentes saisons.
- Couplage simulations numériques thermo-hydrodynamiques et électromagnétiques

Bloc de pergélisol en chambre froide (2005)



Simulations numériques (GprMax2D)

Données mesurées (800 MHz)

avec F. Costard et P. Tucholka

Suivi d'une interface gel/dégel

Radar pour le suivi temporel

Le suivi des variations temporelles:

- robustesse et sensibilité accrue (mesures statiques en différentiel)
- étude de processus physiques dynamiques (gel/dégel, infiltrations)
- \blacktriangleright détermination de paramètres physiques autres que ε , σ ou μ

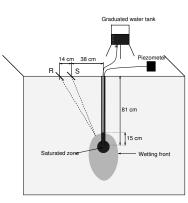
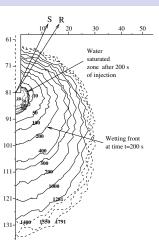
Suivi d'un front d'infiltration d'eau dans du sable

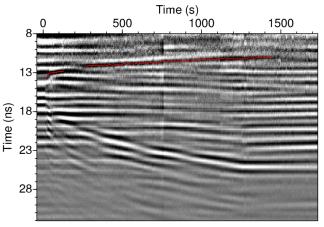
Sable de Fontainebleau: 99% quartz

Anneau simple

Porchet

Étude qualitative d'une infiltration type Porchet (2006-2007)


Schéma de l'expérience

Hydrus2D simulation

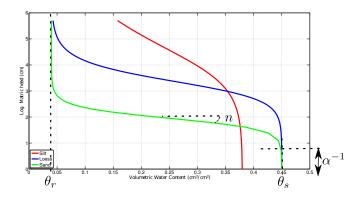
avec P. Tucholka (GEOPS) et S. Schneider

Données statiques 800 MHz

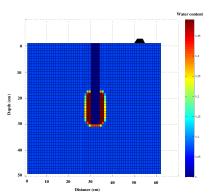
Sensibilité suffisante des mesures radar pour déterminer les limites d'un bulbe d'infiltration!

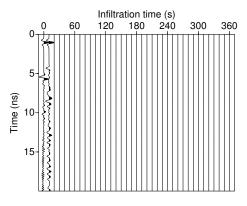
Saintenoy et al., VZJ, 2008

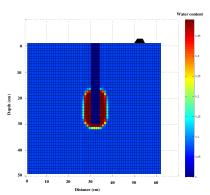
Obtenir la conductivité hydraulique

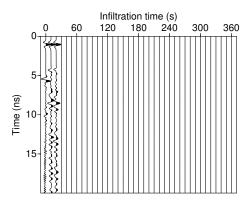

- infiltration en anneau simple ou double
- ▶ infiltromètre à disques (TRIMS)
- ▶ infiltration en petits forages (tests de Porchet ou Guelph)

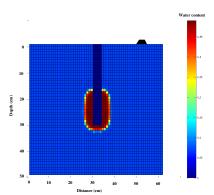
mise en oeuvre: environ 1 h dans du sable

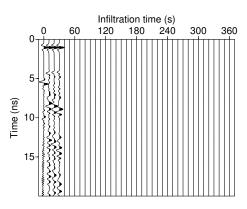


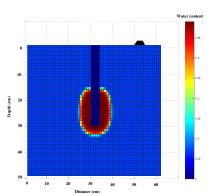

Courbe de rétention en eau (modèle de van Genuchten)

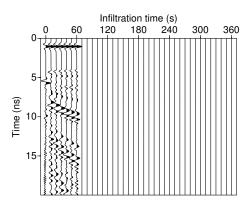

Mesures de laboratoire de plusieurs jours

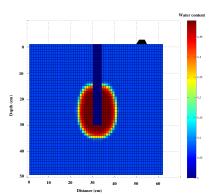

Temps d'infiltration: 10 s

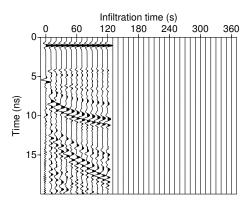


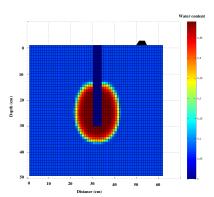

Temps d'infiltration: 20 s



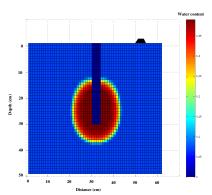

Temps d'infiltration: 30 s

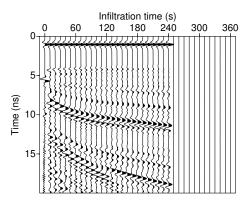


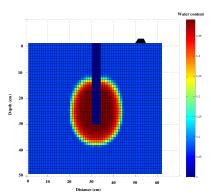

Temps d'infiltration: 1 min

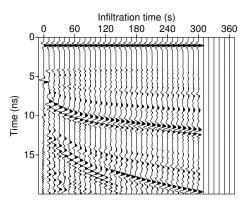


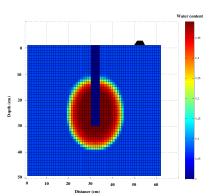
Temps d'infiltration: 2 min

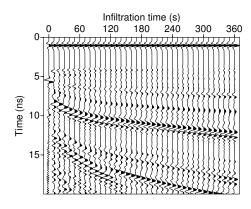


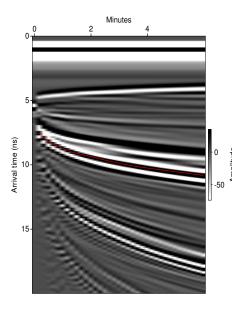

Temps d'infiltration: 3 min




Temps d'infiltration: 4 min

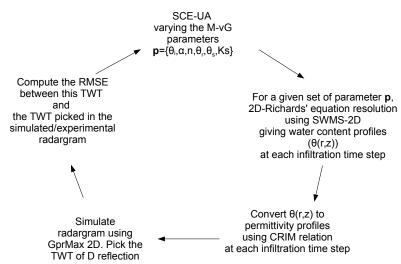



Temps d'infiltration: 5 min



Temps d'infiltration: 6 min

Inversion des données radar


Données:

Temps d'arrivée de la réflection de forte amplitude.

Paramètres recherchés: Mualem-van Genuchten θ_r : teneur en eau résiduelle θ_s : teneur en eau à saturation θ_i : teneur en eau initiale α : lié à la valeur de l'entrée d'air

n: lié à la pente de la courbe de rétention en eau K_s : conductivité hydraulique à saturation

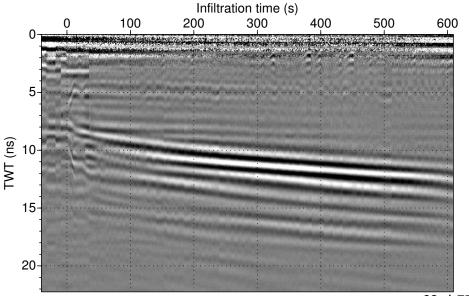
Procédure d'optimization

Test sur données synthétiques

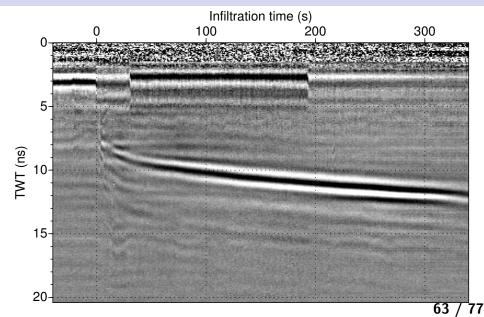
θ_r	θ_s	α	n	K_s	$ heta_i$
$(cm^3.cm^{-3})$	$(\text{cm}^3.\text{cm}^{-3})$	$\left(cm^{-1}\right)$		(cm/min)	$(\mathrm{cm}^3.\mathrm{cm}^{-3})$

Paramètres du modèle

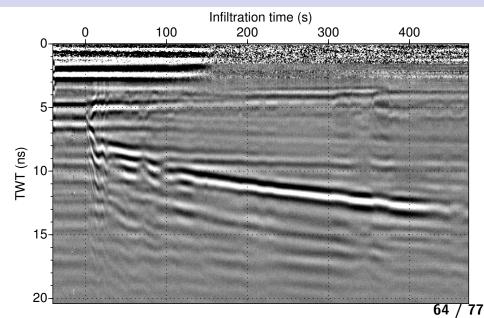
0.06	0.39	0.023 6	5.71	0.120	0.07
------	------	---------	------	-------	------

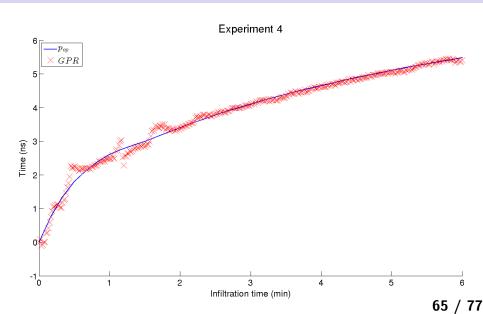

Paramètres retrouvés

Données expérimentales



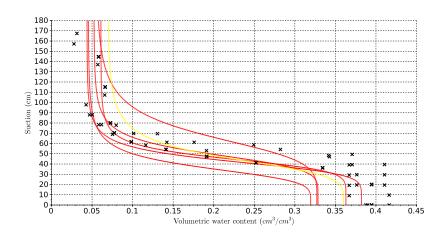
Système Mala Ramac 1600 MHz Différentes profondeurs z Différentes distances antennes-forage d Différentes géométries: tangente ou radiale


1600 MHz, z=30 cm, d=20 cm, tangente


1600 MHz, z=30 cm, d=20 cm, tangente

1600 MHz, z=30 cm, d=15 cm, radiale

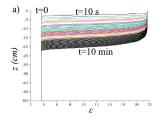
Données réelles vs synthétiques


	θ_r	θ_s	α	n	K_s	θ_i
D/Y	$\mathrm{cm}^3\mathrm{cm}^{-3}$	$\mathrm{cm}^3\mathrm{cm}^{-3}$	cm^{-1}		${ m cm}~{ m min}^{-1}$	$ m cm^3cm^{-3}$

Suivis radar d'infiltration type Porchet

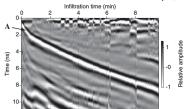
				<i>J</i> I		
06/2006	0.07	0.36	0.023	5.0	0.1	-
06/2014	0.05	0.33	0.021	6.4	0.06	0.07
09/2014	0.06	0.36	0.023	7.3	0.11	0.07
09/2014	0.05	0.32	0.029	5.2	0.09	0.06
09/2014	0.04	0.38	0.024	6.5	0.24	0.05
09/2014	0.05	0.33	0.016	5.2	0.29	0.10

Labo. et infiltromètre à disques


Surface	0.06	0.39	0.023	6.71	[0.076;0.108]	[0.05;0.1]
$30 \ cm$	0.04	[0.37;0.39]	[0.015;0.016]	[8-10]	[0.188;0.216]	[0.075;0.1]
40 cm	[0.05;0.06]	[0.34;0.41]	[0.016;0.02]	[6.87;10]	-	0.1

et avec des infiltrations en anneau?

Quantification de paramètres hydrodynamiques



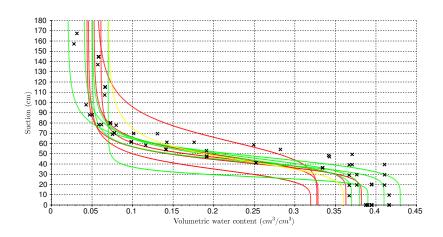
b) 0 2 Infiltration time (min) 4 6 8 10

B 2 1 1 opinion and one of the control o

Simulation hydrodynamique Hydrus1D puis CRIM

Simulation électromagnétique (GprMax2D)

Données de terrain (1600 MHz)


Date	θ_r	θ_s	α	n	K_s	$ heta_i$
D/Y	$\mathrm{cm}^3\mathrm{cm}^{-3}$	$\mathrm{cm}^3\mathrm{cm}^{-3}$	${\rm cm}^{-1}$		${ m cm}{ m min}^{-1}$	$\mathrm{cm}^3\mathrm{cm}^{-3}$

Suivi radar d'infiltration en anneau

06/2011	0.07	0.39	0.036	9	0.03	0.07
01/2012	0.04	0.38	0.021	6	0.11	0.08
11/2012	0.02	0.43	0.021	6	0.02	0.04
11/2012	0.05	0.37	0.022	6	0.02	0.07
07/2013	0.05	0.41	0.024	7	0.13	0.06

Labo. et infiltromètre à disques

				•	
0.06	0.39	0.023	6.71	[0.076;0.108]	[0.05;0.1]

Pour résumer:

- ▶ Les inversions de temps d'arrivées de réflection radar acquises au long d'infiltration en anneau ou en forage permettent de retrouver des jeux de paramètres de Mualem-van Genuchten comparables à ceux estimés par des mesures classiques d'infiltrométrie...
- ▶ ... dans des sables...
- Pas besoin d'attendre un régime d'écoulement permanent
 - --- 5 minutes de mesures suffisent

Méthode de terrain pour estimer les paramètres hydrodynamiques

Léger et al., WRR, 2014 et Léger et al., IEEE JSTARS, 2016

Pistes de recherche futures

- Évaluation des incertitudes
- Inversion de la forme d'onde (au lieu des temps d'arrivée seuls)
- Étude des effets d'hystéresis sur les courbes de rétention en eau
- Prise en compte d'autres modèles hydrodynamiques
- Étude de milieux hétérogènes et/ou anisotrope (utilisation de plusieurs antennes): étude des remblais.
- Changer d'échelle ? En utilisant des forages plus profond et des antennes basses fréquences.

Applications

- ► Fournir des mesures de surface utilisables dans des modélisations hydrologiques à l'échelle d'une parcelle
- Projet Chernobyl avec l'IRSN (Institut de Radioprotection et de Sûreté Nucléaire)
- ▶ Projet KRITERRE avec ANDRA (Agence Nationale pour la gestion des déchets radioactifs): couplage de méthodes géostatistiques avec des modélisations hydrodynamiques et d'évolution de radioactivité pour l'estimation du volume de sols pollués en prévision de démantèlement de centrales nucléaires.

Pour résumer

- Le radar de sol est un outil formidable pour caractériser les milieux froids! Attention aux milieux de grandes conductivités électriques.
- Validation de l'usage du radar pour faire du suivi temporel sur des processus déclenchés
- Mise au point d'une méthode rapide d'estimation de paramètres hydrodynamiques dans des sables

Merci!

